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What is Feedback Flow Control?

• Flow Control
Influence the flow field to achieve a desired effect using 
minimal actuation power
• Passive

Vortex generators
• Active

Synthetic jets
Time-dependent (periodic) blowing and suction
Piezo-electric micro components

• Feedback
Sensors in the wake measure instantaneous flow 
quantities (velocity, pressure) at given points
Actuation based on sensor information
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• Bluff bodies (e.g. on UAVs) serve vital 
operational functions, but they are 
aerodynamically detrimental

• Flow separation results in a wake behind the 
bluff body 

• characterized by unsteady vortex shedding
• results in drag, noise, and vibration
• is detrimental for operation, structural 
integrity

• “Passive” designs are impractical or inhibit 
functionality

• “Active” methods are point designs

• Feedback flow control is an effective way of 
suppressing self-excited flow oscillations without 
modifying the geometry

Bluff Body

Bluff Body

Hunter UAV

http://www.airforce-technology.com/projects/hunter

Why Feedback Flow Control?

Bluff Body

Predator UAV

http://www.defense-update.com/products/p/predatorB.htm
Bluff Body
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How to Feedback Flow Control?
Modeling wake dynamics 

for controller design 

Model Independent
Approach

Direct Navier Stokes
Approach

Low-Dimensional 
Approach

•Simple to 
implement 
experimentally

•Little success in 
past 30 years

•Ideal control 
approach, complete 
set of equations

•Computationally 
very intensive 

•Cannot be 
implemented in real 
time in the near 
future

•

 

Recent developments in 
effective low- 
dimensional models

•

 

Can be implemented 
with relative ease

•

 

Model building is tough
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Cylinder Wake Feedback Control

Actuator
Controller

Sensors

steady

unsteady

steady

Mode 
Estimator

(Least 
Square)

PD Controller
(acts on 

POD Mode 1)

Low 
Pass
Filter

Fc = 4*Fn

Sketches from: Munson, Young, Okiishi. Fundamentals of Fluid Mechanics. p 601.

Goal: Develop a feedback control 
strategy to suppress the 
vortex street of a cylinder at 
Reynolds numbers of 100
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Collaborative Research
Experiment

POD and
Low Dimensional
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Simulation

Controls

PIV Measurement locations

Re-St relationship Unforced and 
Open loop PIV data

Sensor locations

Full flow field data

Control algorithm 
and parameters POD Modes and

Time coefficients
Sensor Locations

Control algorithm 
and parameters
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EXPERIMENTS
Unforced and Open-loop forced
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Unforced



Forced case 1

St/Stn =1, A/D=20%



Forced case 2

St/Stn =1.26, A/D=30%



Lock-In with Periodic Forcing
• Conventional 

wisdom: the low- 
dimensional model 
should be valid for 
arbitrary control 
actions

There is a limited 
envelope of 
amplitude/frequency 
of the disturbance 
wherein the control 
is effective.

Lock-in

Chaos

Chaos



Experiments: Pros and Cons

• Pros
Overview/visualization of flow field
Easy scan of frequency/amplitude parameter 
space
Final verification

• Cons
Expensive model design and building
Limited data available
• Velocity, pressure
• Field of view
• State-of-the-art (e.g. PIV) only 2D

16



SIMULATIONS
Unforced and open-loop forced
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Simulations
• Cobalt

Hybrid-Unstructured, Compressible Solver
Point Implicit with Subiteration
2nd-Order Temporal and Spatial Accuracy
Turbulence Models

• RANS: SA, SARC, SST, and others
• Hybrid RANS/LES: SA-DES, SARC-DES, SST-DES

Domain decomposition using ParMETIS (Dr. Karypis, UMN)
MPI parallelization

• Over 98% efficient on 1024 processors
Arbitrary Lagrangian Eulerian (ALE) for rigid body motion
Variety of motion types: 1DOF, 6DOF

• Matlab
Controller development
Data analysis
Post-processing

• Cobalt-Matlab interface for feedback flow control
Developed under current AFOSR STTR Phase I/II
HDF5 output



Transient Startup Data Set
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3D cylinder: grid
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• Body fitted “O” grid extruded along 
cylinder axis

• 163x198x31 (r, q, z) points
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• L/D=96
• Grid: 

2M nodes
31 spanwise planes

• Time:
50 periods
5.6CPUh/period

Simulation, Re=100
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Simulations, Re=20,000
• L/D=4
• Grid: 

1M nodes
unstructured

• Time:
180CPUh/period



Simulations: Pros and Cons

• Pros
Detailed flow field information
• Time
• Space

Range of possible flow conditions
• Reynolds number transients

• Cons
Time consuming model/grid design and building
Time consuming data generation
Limited number of conditions possible
• Parameter space

23



MODELING AND CONTROLS
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Control of a Ginzburg-Landau 
cylinder wake model

• The complex Ginzburg-Landau (GL) equation model
vortex dynamics in bluff-body (such as a circular cylinder) wakes

• Wake stability of the GL model is defined by the growth parameter
μo is similar to a Reynolds based on the cylinder diameter.
For μ’< 0, the stability features similar to 2D cylinder wake.
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Proper Orthogonal Decomposition

POD
(Proper

Orthogonal
Decomposition)

K Spatial Modes
U1 (x,y)
V1 (x,y)
U2 (x,y)

....
VK (x,y)

K Temporal Mode
Amplitudes

A1 (t)
A2 (t)
…

AK (t)

N Snapshots of 
Flow Field

U(x,y,t)
V(x,y,t)

Flow field from experiment or simulation
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POD and Low Dimensional Modeling
• POD spatial modes

• Flow characteristics
• Sensor placement studies

• POD mode amplitudes
• Low Dimensional Model 

Development

• Develop real time nonlinear 
mapping based on neural 
networks between 
measurable quantities 
(pressure, velocity) and low 
dimensional states

• Linear and nonlinear system 
identification tools

• Develop control strategies

• Reconstruction of the flow field 
possible

• Massive reduction of CFD 
simulation data



SPOD Segmentation
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DPOD Basis Construction
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Modeling: Pros and Cons

• Pros
Rapid exploration of controller parameter space
Implementable in real-time with relative ease
Effectively targets the large coherent structures in 
the flow

• Cons
Model building is tough
Quality/validity of model depends on underlying 
data
• Parameter space

31



EXPERIMENTS
Feedback controlled
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Flow Vis Camera

Cylinder Model

PIV Laser

PIV Camera

Cylinder Actuation
System

Strobe Light

Test Section

Experimental setup



Sensor and Flow Vis Setup

Flow Direction

PIV Laser

Laser Light Sheet
and Feedback 
Measurement
Plane
(@center of model)

Cylinder Model

Dye Ports for Flow Vis
(@ far end of model)



Phase 115° Flow Vis

Time 10s: Flow is 2D, Locked-In

Time 20s: Flow develops spanwise 
phase variation, vortices shedding
delayed in phase at laser light sheet



Phase 115° Flow Vis – Cont’d

Time 33.3s: Spanwise phase
becomes chaotic, incoherent

Time 30s: Stronger Spanwise phase 
variation



Experiments: Pros and Cons

• Pros
Verification of entire feedback flow control concept
Visualization of flow field
Easy scan of controller parameter space

• Cons
Expensive feedback control implementation
Limited data available
• Sensors for real time feedback are limited to 2D

Wake
Surface

• 3D information only available through flow visualization (offline)
Debugging of feedback controller difficult

40



SIMULATIONS
Feedback flow control
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3D cylinder: wake sensors
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Feedback controlled
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Isocontours of Vorticity colored by U Velocity



Feedback controlled
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Centerline

¼ span



Summary

• Develop feedback flow control strategy 
based on low dimensional model

Global flow state estimation using POD
State based feedback controller

• Otherwise, this flow is not controllable
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Best use for feedback flow control

• Experiments
Initial qualitative flow physics understanding
Open-loop parameter scans
Final testing of controllers

• Computations
Detailed data production of key cases (determined by 
experiments)
Debugging of feedback flow control
• Data availability, no measurement errors

• Modeling
Crucial for controller development
Initial controller testing
Model provides global flow state estimation for real time 
implementation
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Conclusions

• Integration of theory, experiments and 
simulations

more than the sum of all three
evaluate best possible use of each at beginning of 
project

• Need experts in all involved fields
But: each expert needs working knowledge of all
other fields involved

• Communication is paramount
• State based feedback flow control impossible 

without IFD
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Outlook

• Application of developed feedback flow 
control methodology

Higher Reynolds numbers
Turbulent flows

• New applications
Aero Servo Optics
Unsteady aerodynamics (MAV, flapping flight)
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